Extremal Hosoya index and Merrifield-Simmons index of hexagonal spiders

نویسنده

  • Wai Chee Shiu
چکیده

For any graph G, let m(G) and i(G) be the numbers of matchings (i.e., the Hosoya index) and the number of independent sets (i.e., the Merrifield–Simmons index) of G, respectively. In this paper, we show that the linear hexagonal spider and zig-zag hexagonal spider attain the extremal values of Hosoya index and Merrifield–Simmons index, respectively. c © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Merrifield-Simmons indices and Hosoya indices of some classes of cartesian graph product

The Merrifield-Simmons index of a graph is defined as the total number of the independent sets of the graph and the Hosoya index of a graph is defined as the total number of the matchings of the graph. In this paper, we give formula for Merrifield-Simmons and Hosoya indices of some classes of cartesian product of two graphs K{_2}×H, where H is a path graph P{_n}, cyclic graph C{_n}, or star gra...

متن کامل

Some extremal unicyclic graphs with respect to Hosoya index and Merrifield-Simmons index

The Hosoya index of a graph is defined as the total number of the matchings, including the empty edge set, of the graph. The Merrifield-Simmons index of a graph is defined as the total number of the independent vertex sets, including the empty vertex set, of the graph. Let U(n,∆) be the set of connected unicyclic graphs of order n with maximum degree ∆. We consider the Hosoya indices and the Me...

متن کامل

Extremal trees with respect to Hosoya Index and Merrifield-Simmons Index

We characterize the trees T with n vertices whose Hosoya index (total number of matchings) is Z(T ) > 16fn−5 resp. the trees whose Merrifield-Simmons index (total number of independent subsets) is σ(T ) < 18fn−5 + 21fn−6, where fk is the kth Fibonacci number. It turns out that all the trees satisfying the inequality are tripodes (trees with exactly three leaves) and the path in both cases. Furt...

متن کامل

Extremal k∗-Cycle Resonant Hexagonal Chains

Denote by B∗ n the set of all k∗-cycle resonant hexagonal chains with n hexagons. For any Bn ∈ B ∗ n , let m(Bn) and i(Bn) be the numbers of matchings (=the Hosoya index) and the number of independent sets (=the Merrifield-Simmons index) of Bn, respectively. In this paper, we give a characterization of the k∗-cycle resonant hexagonal chains, and show that for any Bn ∈ B ∗ n , m(Hn) ≤ m(Bn) and ...

متن کامل

The Hosoya indices and Merrifield-Simmons indices of graphs with connectivity at most k

The Hosoya index and the Merrifield–Simmons index of a graph are defined as the total number of the matchings (including the empty edge set) and the total number of the independent vertex sets (including the empty vertex set) of the graph, respectively. Let Vn,k be the set of connected n-vertex graphs with connectivity at most k. In this note, we characterize the extremal (maximal and minimal) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 156  شماره 

صفحات  -

تاریخ انتشار 2008